Finite-dimensional integrable systems associated with Davey-Stewartson I equation

نویسنده

  • Zixiang Zhou
چکیده

For the Davey-Stewartson I equation, which is an integrable equation in 1+2 dimensions, we have already found its Lax pair in 1+1 dimensional form by nonlinear constraints. This paper deals with the second nonlinearization of this 1+1 dimensional system to get three 1+0 dimensional Hamiltonian systems with a constraint of Neumann type. The full set of involutive conserved integrals is obtained and their functional independence is proved. Therefore, the Hamiltonian systems are completely integrable in Liouville sense. A periodic solution of the Davey-Stewartson I equation is obtained by solving these classical Hamiltonian systems as an example.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite dimensional integrable Hamiltonian systems associated with DSI equation by Bargmann constraints

The Davey-Stewartson I equation is a typical integrable equation in 2+1 dimensions. Its Lax system being essentially in 1+1 dimensional form has been found through nonlinearization from 2+1 dimensions to 1+1 dimensions. In the present paper, this essentially 1+1 dimensional Lax system is further nonlinearized into 1+0 dimensional Hamiltonian systems by taking the Bargmann constraints. It is sho...

متن کامل

Localized coherent structures of the Davey-Stewartson equation in the bilinear formalism

Recent studies on (2 + 1 )-dimensional integrable systems have shown the existence of solutions describing localized coherent structures with remarkable dynamical properties.‘*2 Unlike one-dimensional solitons these structures do not preserve, in general, their form upon interaction2 and may undergo processes of fusion and fission.3p4 The basic model exhibiting these solutions is the DaveyStewa...

متن کامل

New explicit and Soliton Wave Solutions of Some Nonlinear Partial Differential Equations with Infinite Series Method

To start with, having employed transformation wave, some nonlinear partial differential equations have been converted into an ODE. Then, using the infinite series method for equations with similar linear part, the researchers have earned the exact soliton solutions of the selected equations. It is required to state that the infinite series method is a well-organized method for obtaining exact s...

متن کامل

Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation

Two new integrable nonlocal Davey–Stewartson equations are introduced. These equations provide two-spatial dimensional analogues of the integrable, nonlocal nonlinear Schrö-dinger equation introduced in Ablowitz and Musslimani (2013 Phys. Rev. Lett. 110 064105). Furthermore, like the latter equation, they also possess a PT symmetry and, as it is well known, this symmetry is important for the ...

متن کامل

On Classification of Integrable Davey-Stewartson Type Equations

This paper is devoted to the classification of integrable Davey-Stewartson type equations. A list of potentially deformable dispersionless systems is obtained through the requirement that such systems must be generated by a polynomial dispersionless Lax pair. A perturbative approach based on the method of hydrodynamic reductions is employed to recover the integrable systems along with their Lax...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001